Conformational Change of Arabidopsis thaliana Thioredoxin Reductase after Binding of Pyridine Nucleotide and Thioredoxin

Henrikas Nivinskas^a, Jean-Pierre Jacquot^b, and Narimantas Čėnas^{a,*}

- ^a Institute of Biochemistry, Mokslininku 12, Vilnius 2600, Lithuania.
- Fax: 370-2-729196. E-mail: ncenas@bchi.lt ^b Laboratoire de Biologie Forestiere, Universite de Nancy 1, 54506 Vandoeuvre Cedex, France
- * Author for correspondence and reprint requests

fluorescence of Arabidopsis thaliana NADPH:thioredoxin reductase (TR, EC 1.6.4.5) by 2 times, whereas the binding of 3-aminopyridine adenine dinucleotide phosphate (AADP+) $(K_d < 0.1 \text{ µM})$ quenched the fluorescence by 20%. Thioredoxin (TRX) also enhanced the FAD fluorescence by 35%. The K_d of TR-NADP⁺ and TR-AADP⁺ complexes did not change in the presence of 45 µm TRX. Our findings imply that the binding of NADP+ and AADP⁺ at the NADP(H)-binding site of A. thaliana TR, and/or the binding of TRX in the

vicinity of the catalytic disulfide increase the content of fluorescent FR conformer (NADP(H)-binding site adjacent to flavin). The different effects of NADP⁺ and AADP⁺ on FAD fluorescence intensity may be explained by the superposition of two opposite factors: i) increased content of fluorescent FR conformer upon binding of NADP+ or AADP+; ii) quenching of FAD fluorescence by electron-donating 3-aminopyridinium ring of AADP⁺.

We have found that the binding of NADP⁺ ($K_d = 0.86 \pm 0.11 \,\mu\text{M}$) enhanced the FAD

Z. Naturforsch. **56c**, 188–192 (2001); received November 30, 2000/January 16, 2001 Thioredoxin, Thioredoxin Reductase, Arabidopsis thaliana